53,652 research outputs found

    Use of H2Ri Wicking Fabric to Prevent Frost Boils in the Dalton Highway Beaver Slide Area, Alaska

    Get PDF
    INE/AUTC 12.2

    A Bio-Wicking System to Mitigate Capillary Water in Base Course

    Get PDF
    Water within pavement layers is the major cause of pavement deteriorations. High water content results in significant reduction in soil’s resilient behavior and increase in permanent deformation. Conventional drainage systems can only drain gravity water but not capillary water. Both preliminary lab and field tests have proven the drainage efficiency of a newly developed H2Ri geotextile with wicking fabrics. This bio-wicking system aims at resolving the potential issues that the original design may encounter: (1) H2Ri ultraviolet degradation, (2) H2Ri mechanical failure, (3) loss of drainage function under high suction, and (4) clogging and salt concentration. Both elemental level and full-scale test results indicated that the bio-wicking system is more effective in draining capillary water within the base courses compared with original design, in which the geotextile is directly exposed to the open air. However, a good drainage condition is required for the bio-wicking system to maintain its drainage efficiency. Accumulation of excess water will result in water re-entering the road embankment. Moreover, grass root and geotextile share the same working mechanism in transporting water. In the proposed bio-wicking system, the relatively smaller channels in the grass roots further ensures water moving from H2Ri geotextile, transporting through the stems of grass, and eventually evapo-transpiring into the air at the leaf-air interfaces. In sum, the bio-wicking system seemed to successfully address the concerns in the preliminary design and is a more efficient system to dehydrate the road embankment under unsaturated conditions.TenCate Geosynthetic

    Development of Landslide Warning System

    Get PDF
    Landslides cause approximately 25 to 50 deaths and US$1 - 2 billion worth of damage in the United States annually. They can be triggered by humans or by nature. It has been widely recognized that rainfall is one of the major causes of slope instability and failure. Slope remediation and stabilization efforts can be costly. An early warning system is a suitable alternative and can save human lives. In this project, an early warning system was developed for a 40-foot-high cut slope on the island of Hawaii. To achieve the objective, subsurface investigations were performed and undisturbed samples were collected. For the purpose of unsaturated soil testing, new testing apparatuses were developed by modifying the conventional oedometer and direct shear cells. The unsaturated soil was characterized using two separate approaches and, later, the results were discussed and compared. The slope site was instrumented for the measurement of suction, water content, displacement, and precipitation. The collected climatic data along with the calibrated hydraulic parameters were used to build an infiltration-evapotranspiration numerical model. The model estimations were compared with the field measurements and showed good agreement. The verified model was used to determine the pore-water pressure distribution during and after a 500-years return storm. Later, the pore-water pressure distribution was transferred to a slope stability software and used to study the slope stability during and after the storm. Based on a 2D slope stability analysis, the slope can survive the 500-year storm with a factor of safety of 1.20. Instrument threshold values were established for water content sensors and tensiometers using a traffic-light-based trigger criterion

    Turbulent convection model in the overshooting region: II. Theoretical analysis

    Full text link
    Turbulent convection models are thought to be good tools to deal with the convective overshooting in the stellar interior. However, they are too complex to be applied in calculations of stellar structure and evolution. In order to understand the physical processes of the convective overshooting and to simplify the application of turbulent convection models, a semi-analytic solution is necessary. We obtain the approximate solution and asymptotic solution of the turbulent convection model in the overshooting region, and find some important properties of the convective overshooting: I. The overshooting region can be partitioned into three parts: a thin region just outside the convective boundary with high efficiency of turbulent heat transfer, a power law dissipation region of turbulent kinetic energy in the middle, and a thermal dissipation area with rapidly decreasing turbulent kinetic energy. The decaying indices of the turbulent correlations kk, ur′T′ˉ\bar{u_{r}'T'}, and T′T′ˉ\bar{T'T'} are only determined by the parameters of the TCM, and there is an equilibrium value of the anisotropic degree ω\omega. II. The overshooting length of the turbulent heat flux ur′T′ˉ\bar{u_{r}'T'} is about 1Hk1H_k(Hk=∣drdlnk∣H_k=|\frac{dr}{dlnk}|). III. The value of the turbulent kinetic energy at the convective boundary kCk_C can be estimated by a method called \textsl{the maximum of diffusion}. Turbulent correlations in the overshooting region can be estimated by using kCk_C and exponentially decreasing functions with the decaying indices.Comment: 32 pages, 9 figures, Accepted by The Astrophysical Journa

    Development of a Computer Vision-Based Three-Dimensional Reconstruction Method for Volume-Change Measurement of Unsaturated Soils during Triaxial Testing

    Get PDF
    Problems associated with unsaturated soils are ubiquitous in the U.S., where expansive and collapsible soils are some of the most widely distributed and costly geologic hazards. Solving these widespread geohazards requires a fundamental understanding of the constitutive behavior of unsaturated soils. In the past six decades, the suction-controlled triaxial test has been established as a standard approach to characterizing constitutive behavior for unsaturated soils. However, this type of test requires costly test equipment and time-consuming testing processes. To overcome these limitations, a photogrammetry-based method has been developed recently to measure the global and localized volume-changes of unsaturated soils during triaxial test. However, this method relies on software to detect coded targets, which often requires tedious manual correction of incorrectly coded target detection information. To address the limitation of the photogrammetry-based method, this study developed a photogrammetric computer vision-based approach for automatic target recognition and 3D reconstruction for volume-changes measurement of unsaturated soils in triaxial tests. Deep learning method was used to improve the accuracy and efficiency of coded target recognition. A photogrammetric computer vision method and ray tracing technique were then developed and validated to reconstruct the three-dimensional models of soil specimen
    • …
    corecore